Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400215, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637951

ABSTRACT

The quantitative measurement of adsorbed guest species within metal-organic framework (MOF) pores is of fundamental importance for evaluating the adsorption performance of MOFs. However, routine analytic techniques such as thermogravimetric analysis cannot distinguish the contribution from species adsorbed within pores, species adsorbed on the surface, and gas phase or liquid phase encapsulated in the inter-crystalline space. Herein, we developed a new quantification method based on the cross-polarization (CP) solid-state nuclear magnetic resonance (ssNMR) technique, in which only the species within MOF pores are selectively probed due to the dramatically reduced mobility. Using the commercialized MOF α-Mg3(HCOO)6 as an example, a good linear correlation between Areaguest/Areaframework (i. e., the integrated area of guest and framework 13C NMR signals) and guest loading can be observed for several representative molecules such as benzene, tetrahydrofuran (THF), and 1,4-dioxane, clearly revealing the feasibility of CP quantification approach. The effects of guest molecule and corresponding residual mobility on the CP quantification are further discussed by varying the geometry and size of guest molecules. This methodology thus provides an effective and irreplaceable route to evaluate the adsorption performance of porous materials in-depth, especially for liquid-phase adsorption and gas-phase adsorption in which the capillary condensation is not negligible.

2.
Proc Natl Acad Sci U S A ; 121(6): e2312959121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300865

ABSTRACT

The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.

3.
RSC Adv ; 10(54): 32616-32627, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516509

ABSTRACT

An ultrasound-assisted enzymatic method was used to extract the polysaccharides from blackcurrant fruits (BP), and then a nitric acid-sodium selenite method was employed to prepare twelve kinds of selenized blackcurrant polysaccharides (SBPs). Among them, SBP-1, SBP-2 and SBP-3 with different selenium contents of 250 ± 11, 312 ± 15 and 643 ± 24 µg g-1, displayed relatively higher 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging activities than the others. After treating with a Sepharose-6B chromatography column, the purified blackcurrant polysaccharide (PBP) and three selenized polysaccharides (PSBP-1, PSBP-2, PSBP-3) with high purity were obtained. Compared with PBP, PSBPs possessed a larger absolute value of zeta potential (ZP) and smaller particle size, indicating the positive influence of selenized modification on physical stability of polysaccharides. Ultraviolet (UV), Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra confirmed that selenium had been introduced onto the polysaccharide structure. X-ray diffraction (XRD) and I2-KI reaction results indicated that selenized modification did not cause an obvious change in crystal form and branch structure of blackcurrant polysaccharides. In addition, PSBPs were superior to PBP in antioxidant and antiglycation capacities, and the bioactivities of PSBPs were significantly improved in positive correlation with selenium content. This study suggested that PSBPs may be a potential selenium source and serve as functional food and medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...